
Transparent integration of a domain-specific language for specification of context-free path queries (CFPQs) into a general-purpose programming language as well as static checking of errors in queries may greatly simplify the development of applications using CFPQs. LINQ and ORM can be used for the integration, but they have issues with flexibility: query decomposition and reusing of subqueries are a challenge. Adaptation of parser combinators technique for paths querying may solve these problems. Conventional parser combinators process linear input, and only the Trails library is known to apply this technique for path querying. Trails suffers the common parser combinators issue: it does not support left-recursive grammars and also experiences problems in cycles handling. We demonstrate that it is possible to create general parser combinators for CFPQ which support arbitrary context-free grammars and arbitrary input graphs. We implement a library of such parser combinators and show that it is applicable for realistic tasks.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
