
arXiv: 1712.03474
Facial expression synthesis has drawn much attention in the field of computer graphics and pattern recognition. It has been widely used in face animation and recognition. However, it is still challenging due to the high-level semantic presence of large and non-linear face geometry variations. This paper proposes a Geometry-Guided Generative Adversarial Network (G2-GAN) for photo-realistic and identity-preserving facial expression synthesis. We employ facial geometry (fiducial points) as a controllable condition to guide facial texture synthesis with specific expression. A pair of generative adversarial subnetworks are jointly trained towards opposite tasks: expression removal and expression synthesis. The paired networks form a mapping cycle between neutral expression and arbitrary expressions, which also facilitate other applications such as face transfer and expression invariant face recognition. Experimental results show that our method can generate compelling perceptual results on various facial expression synthesis databases. An expression invariant face recognition experiment is also performed to further show the advantages of our proposed method.
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 108 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
