Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

Channel Steganalysis

Authors: Martin Steinebach; Andre Ester; Huajian Liu;

Channel Steganalysis

Abstract

The rise of social networks during the last 10 years has created a situation in which up to 100 million new images and photographs are uploaded and shared by users every day. This environment poses an ideal background for those who wish to communicate covertly by the use of steganography. It also creates a new set of challenges for steganalysts, who have to shift their field of work away from a purely scientific laboratory environment and into a diverse real-world scenario, while at the same time having to deal with entirely new problems, such as the detection of steganographic channels or the impact that even a low false positive rate has when investigating the millions of images which are shared every day on social networks. We evaluate how to address these challenges with traditional steganographic and statistical methods, rather then using high performance computing and machine learning. To achieve this we first analyze the steganographic algorithm F5 applied to images with a high degree of diversity, as would be seen in a typical social network. We show that the biggest challenge lies in the detection of images whose payload is less then 50% of the available capacity of an image. We suggest new detection methods and apply these to the problem of channel detection in social network. We are able to show that using our attacks we are able to detect the majority of covert F5 channels after a mix containing 10 stego images has been classified by our scheme.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!