
Syllables play an important role in speech synthesis, speech recognition, and spoken document retrieval. A novel, low cost, and language agnostic approach to dividing words into their corresponding syllables is presented. A hybrid genetic algorithm constructs a categorization of phones optimized for syllabification. This categorization is used on top of a hidden Markov model sequence classifier to find syllable boundaries. The technique shows promising preliminary results when trained and tested on English words.
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
