<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11311/1085562 , 11589/196532
In this paper we propose a new dataset, i.e., the MMTF-14K multi-faceted dataset. It is primarily designed for the evaluation of video-based recommender systems, but it also supports the exploration of other multimedia tasks such as popularity prediction, genre classification and auto-tagging (aka tag prediction). The data consists of 13,623 Hollywood-type movie trailers, ranked by 138,492 users, generating a total of almost 12.5 million ratings. To address a broader community, metadata, audio and visual descriptors are also pre-computed and provided along with several baseline benchmarking results for uni-modal and multi-modal recommendation systems. This creates a rich collection of data for benchmarking results and which supports future development of this field.
Content description; Social media; Video recommendation; Video trailer benchmarking dataset
Content description; Social media; Video recommendation; Video trailer benchmarking dataset
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |