
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>We introduce a novel algorithm for transforming character animation sequences that preserves essential physical properties of the motion. By using the spacetime constraints dynamics formulation our algorithm maintains realism of the original motion sequence without sacrificing full user control of the editing process. In contrast to most physically based animation techniques that synthesize motion from scratch, we take the approach of motion transformationas the underlying paradigm for generating computer animations. In doing so, we combine the expressive richness of an input animation sequence with the controllability of spacetime optimization to create a wide range of realistic character animations. The spacetime dynamics formulation also allows editing of intuitive, high-level motion concepts such as the time and placement of footprints, length and mass of various extremities, number of body joints and gravity. Our algorithm is well suited for the reuse of highly-detailed captured motion animations. In addition, we describe a new methodology for mapping a motion between characters with drastically different numbers of degrees of freedom. We use this method to reduce the complexity of the spacetime optimization problems. Furthermore, our approach provides a paradigm for controlling complex dynamic and kinematic systems with simpler ones.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 297 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
