
Near Infrared Spectroscopy (NIRS) is a sensing technique in which near infrared light is transmitted into a sample, followed by light absorbance measurements at various wavelengths. This technique enables the inference of the inner chemical composition of the scanned sample, and therefore can be used to identify or classify objects. In this paper, we describe how to facilitate the use of NIRS by non- expert users in everyday settings. Our work highlights the key challenges of placing NIRS devices in the hands of non-experts. We develop a system to mitigate these challenges, and evaluate it in a user study. We show how NIRS technology can be successfully utilised by untrained users in an unsupervised manner through a special enclosure and an accompanying smartphone app. Finally, we discuss potential future developments of commoditised NIRS.
user study, user-induced errors, sample identification, Near Infrared Spectroscopy, pharmaceuticals, sensor accessibility, gluten detection
user study, user-induced errors, sample identification, Near Infrared Spectroscopy, pharmaceuticals, sensor accessibility, gluten detection
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
