
Searching a database of 3D-volume objects for objects which are similar to a given 3D search object is an important problem which arises in number of database applications — for example, in Medicine and CAD. In this paper, we present a new geometry-based solution to the problem of searching for similar 3D-volume objects. The problem is motivated from a real application in the medical domain where volume similarity is used as a basis for surgery decisions. Our solution for an efficient similarity search on large databases of 3D volume objects is based on a new geometric index structure. The basic idea of our new approach is to use the concept of hierarchical approximations of the 3D objects to speed up the search process. We formally show the correctness of our new approach and introduce two instantiations of our general idea, which are based on cuboid and octree approximations. We finally provide a performance evaluation of our new index structure revealing significant performance improvements over existing approaches.
info:eu-repo/classification/ddc/004
info:eu-repo/classification/ddc/004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
