
Lava is a tool to assist circuit designers in specifying, designing, verifying and implementing hardware. It is a collection of Haskell modules. The system design exploits functional programming language features, such as monads and type classes, to provide multiple interpretations of circuit descriptions. These interpretations implement standard circuit analyses such as simulation, formal verification and the generation of code for the production of real circuits.Lava also uses polymorphism and higher order functions to provide more abstract and general descriptions than are possible in traditional hardware description languages. Two Fast Fourier Transform circuit examples illustrate this.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 221 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
