Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM Journal on Emerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

MRAM PUF

Using Geometric and Resistive Variations in MRAM Cells
Authors: Jayita Das; Kevin Scott; Sanjukta Bhanja;
Abstract

In this work, we have studied two novel techniques to enhance the performance of existing geometry-based magnetoresistive RAM physically unclonable function (MRAM PUF). Geometry-based MRAM PUFs rely only on geometric variations in MRAM cells that generate preferred ground state in cells and form the basis of digital signature generation. Here we study two novel ways to improve the performance of the geometry-based PUF signature. First, we study how the choice between specific geometries can enhance the reliability of the digital signature. Using fabrications and simulations, we study how the rectangular shape in the PUF cells is more susceptible to lithography-based geometric variations than the elliptical shape of the same aspect ratio. The choice of rectangular over elliptical masks in the lithography process can therefore improve the reliability of the digital signature from PUF. Second, we present a MRAM PUF architecture and study how resistances in MRAM cells can be used to generate analog voltage output that are easier to detect if probed by an adversary. In the new PUF architecture, we have the choice between selection of rows and columns to generate unique and hard-to-predict analog voltage outputs. For a 64-bit response, the analog voltage output can range between 20 and 500 mV, making it tough for an adversary to guess over this wide range of voltages. This work ends with a discussion on the threat resilience ability of the new improved MRAM PUF to attacks from probing-, tampering-, reuse-, and simulation-based models.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!