Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM Transactions on ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FPGA-Based Dynamically Reconfigurable SQL Query Processing

Authors: Ziener, Daniel; Bauer, Florian; Becher, Andreas; Dennl, Christopher; Meyer-Wegener, Klaus; Schurfeld, Ute; Teich, Jürgen; +2 Authors

FPGA-Based Dynamically Reconfigurable SQL Query Processing

Abstract

In this article, we propose an FPGA-based SQL query processing approach exploiting the capabilities of partial dynamic reconfiguration of modern FPGAs. After the analysis of an incoming query, a query-specific hardware processing unit is generated on the fly and loaded on the FPGA for immediate query execution. For each query, a specialized hardware accelerator pipeline is composed and configured on the FPGA from a set of presynthesized hardware modules. These partially reconfigurable hardware modules are gathered in a library covering all major SQL operations like restrictions and aggregations, as well as more complex operations such as joins and sorts. Moreover, this holistic query processing approach in hardware supports different data processing strategies including row- as column-wise data processing in order to optimize data communication and processing. This article gives an overview of the proposed query processing methodology and the corresponding library of modules. Additionally, a performance analysis is introduced that is able to estimate the processing time of a query for different processing strategies and different communication and processing architecture configurations. With the help of this performance analysis, architectural bottlenecks may be exposed and future optimized architectures, besides the two prototypes presented here, may be determined.

Related Organizations
Keywords

Dynamic partial reconfiguration, SQL processing, Reconfigurable computing, FPGA

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!