
Storing, querying, and analyzing trajectories is becoming increasingly important, as the availability and volumes of trajectory data increases. One important class of trajectory analysis is computing trajectory similarity. This paper introduces and compares four of the most common measures of trajectory similarity: longest common subsequence (LCSS), Fréchet distance, dynamic time warping (DTW), and edit distance. These four measures have been implemented in a new open source R package, freely available on CRAN [19]. The paper highlights some of the differences between these four similarity measures, using real trajectory data, in addition to indicating some of the important emerging applications for measurement of trajectory similarity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 156 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
