
With consumer reviews becoming a mainstream part of e-commerce, a good method of detecting the product or service aspects that are discussed is desirable. This work focuses on detecting aspects that are not literally mentioned in the text, or implicit aspects. To this end, a co-occurrence matrix of synsets from WordNet and implicit aspects is constructed. The semantic relations that exist between synsets in WordNet are exploited to enrich the co-occurrence matrix with more contextual information. Comparing this method with a similar method which is not semantics-driven clearly shows the benefit of the proposed method. Especially corpora of limited size seem to benefit from the added semantic context.
EUR ESE 32
EUR ESE 32
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
