<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Parser combinators provide an elegant way of writing parsers: parser implementations closely follow the structure of the underlying grammar, while accommodating interleaved host language code for data processing. However, the host language features used for composition introduce substantial overhead, which leads to poor performance.In this paper, we present a technique to systematically eliminate this overhead. We use Scala macros to analyse the grammar specification at compile-time and remove composition, leaving behind an efficient top-down, recursive-descent parser.We compare our macro-based approach to a staging-based approach using the LMS framework, and provide an experience report in which we discuss the advantages and drawbacks of both methods. Our library outperforms Scala's standard parser combinators on a set of benchmarks by an order of magnitude, and is 2x faster than code generated by LMS.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |