
Assertions are gaining importance in pre-silicon hardware verification to ensure expected design behavior. Coverage of an assertion in terms of statements of a Register Transfer Level (RTL) source code is a very accessible metric for understanding the scope of assertions and for debug. However, few methods to report it currently exist. We present a methodology to define and compute code coverage of an assertion. Our method is based on static and dynamic analysis of the RTL source code. We demonstrate the scalability and effectiveness of our approach with experimental results on real designs for both manual and automatically generated assertions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
