
Modern GPUs support more flexible programming models through systems such as DirectCompute, OpenGL compute, OpenCL, and CUDA. Although much has been made of GPGPU programming, this course focuses on the application of compute on GPUs for graphics in particular.We will start with a brief overview of the underlying GPU architectures for compute. We will then discuss how the languages are constructed to help take advantage of these architectures and what the differences are. Since the focus is on application to graphics, we will discuss interoperability with graphics APIs and performance implications.We will also address issues related to choosing between compute and other programmable graphics stages such as pixel or fragment shaders, as well as how to interact with these other graphics pipeline stages.Finally, we will discuss instances where compute has been used specifically for graphics. The attendee will leave the course with a basic understanding of where they can make use of compute to accelerate or extend graphics applications.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
