Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACM Transactions on ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACM Transactions on Embedded Computing Systems
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Software thread integration for instruction-level parallelism

Authors: Alexander G. Dean; Won So;

Software thread integration for instruction-level parallelism

Abstract

Multimedia applications require a significantly higher level of performance than previous workloads of embedded systems. They have driven digital signal processor (DSP) makers to adopt high-performance architectures like VLIW (Very-Long Instruction Word). Despite many efforts to exploit instruction-level parallelism (ILP) in the application, the speed is a fraction of what it could be, limited by the difficulty of finding enough independent instructions to keep all of the processor's functional units busy.This article proposes Software Thread Integration (STI) for instruction-level parallelism. STI is a software technique for interleaving multiple threads of control into a single implicitly multithreaded one. We use STI to improve the performance on ILP processors by merging parallel procedures into one, increasing the compiler's scope and hence allowing it to create a more efficient instruction schedule. Assuming the parallel procedures are given, we define a methodology for finding the best performing integrated procedure with a minimum compilation time.We quantitatively estimate the performance impact of integration, allowing various integration scenarios to be compared and ranked via profitability analysis. During integration of threads, different ILP-improving code transformations are selectively applied according to the control structure and the ILP characteristics of the code, driven by interactions with software pipelining. The estimated profitability is verified and corrected by an iterative compilation approach, compensating for possible estimation inaccuracy. Our modeling methods combined with limited compilation quickly find the best integration scenario without requiring exhaustive integration.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
bronze