
arXiv: 1408.6916
The development of crowdsourced query processing systems has recently attracted a significant attention in the database community. A variety of crowdsourced queries have been investigated. In this paper, we focus on the crowdsourced join query which aims to utilize humans to find all pairs of matching objects from two collections. As a human-only solution is expensive, we adopt a hybrid human-machine approach which first uses machines to generate a candidate set of matching pairs, and then asks humans to label the pairs in the candidate set as either matching or non-matching. Given the candidate pairs, existing approaches will publish all pairs for verification to a crowdsourcing platform. However, they neglect the fact that the pairs satisfy transitive relations. As an example, if $o_1$ matches with $o_2$, and $o_2$ matches with $o_3$, then we can deduce that $o_1$ matches with $o_3$ without needing to crowdsource $(o_1, o_3)$. To this end, we study how to leverage transitive relations for crowdsourced joins. We propose a hybrid transitive-relations and crowdsourcing labeling framework which aims to crowdsource the minimum number of pairs to label all the candidate pairs. We prove the optimal labeling order in an ideal setting and propose a heuristic labeling order in practice. We devise a parallel labeling algorithm to efficiently crowdsource the pairs following the order. We evaluate our approaches in both simulated environment and a real crowdsourcing platform. Experimental results show that our approaches with transitive relations can save much more money and time than existing methods, with a little loss in the result quality.
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 140 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
