Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://supertech.csa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An analysis of dag-consistent distributed shared-memory algorithms

Authors: Robert D. Blumofe; Matteo Frigo; Christopher F. Joerg; Charles E. Leiserson; Keith H. Randall;

An analysis of dag-consistent distributed shared-memory algorithms

Abstract

In this paper, we analyze the performance of parallel multithreaded algorithms that use dag-consistent distributed shared memory. Specifically, we analyze execution time, page faults, and space requirements for multithreaded algorithms executed by a workstealing thread scheduler and the BACKER algorithm for maintaining dag consistency. We prove that if the accesses to the backing store are random and independent (the BACKER algorithm actually uses hashing), the expected execution time TP(C) of a “fully strict” multithreaded computation on P processors, each with a LRU cache of C pages, is O(T1(C)=P+mCT∞), where T1(C) is the total work of the computation including page faults, T∞ is its critical-path length excluding page faults, and m is the minimum page transfer time. As a corollary to this theorem, we show that the expected number FP(C) of page faults incurred by a computation executed on P processors can be related to the number F1(C) of serial page faults by the formula FP(C) F1(C)+O(CPT∞). Finally, we give simple bounds on the number of page faults and the space requirements for “regular” divide-and-conquer algorithms. We use these bounds to analyze parallel multithreaded algorithms for matrix multiplication and LU-decomposition.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 1%
Top 10%