
arXiv: 1111.3350
In traditional mechanism design, agents only care about the utility they derive from the outcome of the mechanism. We look at a richer model where agents also assign non-negative dis-utility to the information about their private types leaked by the outcome of the mechanism. We present a new model for privacy-aware mechanism design, where we only assume an upper bound on the agents' loss due to leakage, as opposed to previous work where a full characterization of the loss was required. In this model, under a mild assumption on the distribution of how agents value their privacy, we show a generic construction of privacy-aware mechanisms and demonstrate its applicability to electronic polling and pricing of a digital good.
FOS: Computer and information sciences, Computer Science - Computer Science and Game Theory, Computer Science and Game Theory (cs.GT)
FOS: Computer and information sciences, Computer Science - Computer Science and Game Theory, Computer Science and Game Theory (cs.GT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
