<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this letter we present a brief report of our recent research on information distribution mechanisms in networks [Babaioff et al. 2011]. We study scenarios in which all nodes that become aware of the information compete for the same prize, and thus have an incentive not to propagate information. Examples of such scenarios include the 2009 DARPA Network Challenge (finding red balloons), and raffles. We give special attention to one application domain, namely Bitcoin, a decentralized electronic currency system. We propose reward schemes that will remedy an incentives problem in Bitcoin in a Sybil-proof manner, with little payment overhead.
FOS: Computer and information sciences, Computer Science - Computer Science and Game Theory, Computer Science and Game Theory (cs.GT)
FOS: Computer and information sciences, Computer Science - Computer Science and Game Theory, Computer Science and Game Theory (cs.GT)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 169 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |