
The information-technology platform is being radically transformed with the widespread adoption of the cloud computing model supported by data centers containing large numbers of multicore servers. While cloud computing platforms can potentially enable a rich variety of distributed applications, the need to exploit multiscale parallelism at the inter-node and intra-node level poses significantly new challenges for software. Recent advances in the Google MapReduce and Hadoop frameworks have led to simplified programming models for a restricted class of distributed batch-processing applications. However, these frameworks do not support richer distributed application structures beyond map-reduce, and do not offer any solutions for exploiting shared-memory multicore parallelism at the intra-node level.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
