Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ARROW

GenerAting SignatuRes to Detect DRive-By DOWnloads
Authors: Zhang, Junjie; Seifert, Christian; Stokes, Jack W.; Lee, Wenke;
Abstract

A drive-by download attack occurs when a user visits a webpage which attempts to automatically download malware without the user's consent. Attackers sometimes use a malware distribution network (MDN) to manage a large number of malicious webpages, exploits, and malware executables. In this paper, we provide a new method to determine these MDNs from the secondary URLs and redirect chains recorded by a high-interaction client honeypot. In addition, we propose a novel drive-by download detection method. Instead of depending on the malicious content used by previous methods, our algorithm first identifies and then leverages the URLs of the MDN's central servers, where a central server is a common server shared by a large percentage of the drive-by download attacks in the same MDN. A set of regular expression-based signatures are then generated based on the URLs of each central server. This method allows additional malicious webpages to be identified which launched but failed to execute a successful drive-by download attack. The new drive-by detection system named ARROW has been implemented, and we provide a large-scale evaluation on the output of a production drive-by detection system. The experimental results demonstrate the effectiveness of our method, where the detection coverage has been boosted by 96% with an extremely low false positive rate.

Keywords

Computer Science and Engineering, Engineering, malware distribution network, signature generation, Computer Sciences, detection, security, drive-by download

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!