Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM SIGIR Forumarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proof of concept

concept-based biomedical information retrieval
Authors: Dolf Trieschnigg;

Proof of concept

Abstract

In this thesis we investigate the possibility to integrate domain-specific knowledge into biomedical information retrieval (IR). Recent decades have shown a fast growing interest in biomedical research, reflected by an exponential growth in scientific literature. An important problem for biomedical IR is dealing with the complex and inconsistent terminology encountered in biomedical publications. Dealing with the terminology problem requires domain knowledge stored in terminological resources: controlled indexing vocabularies and thesauri. The integration of this knowledge is, however, far from trivial. The first research theme investigates heuristics for obtaining word-based representations from biomedical text for robust retrieval. We investigated the effect of choices in document preprocessing heuristics on retrieval effectiveness. Document preprocessing heuristics such as stop word removal, stemming, and breakpoint identification and normalization were shown to strongly affect retrieval performance. An effective combination of heuristics was identified to obtain a word-based representation from text for the remainder of this thesis. The second research theme deals with concept-based retrieval. We compared a word-based to a concept-based representation and determined to what extent a manual concept-based representation can be automatically obtained from text. Retrieval based on only concepts was demonstrated to be significantly less effective than word-based retrieval. This deteriorated performance could be explained by errors in the classification process, limitations of the concept vocabularies and limited exhaustiveness of the concept-based document representations. Retrieval based on a combination of word-based and automatically obtained concept-based query representations did significantly improve word-only retrieval. In the third and last research theme we propose a cross-lingual framework for monolingual biomedical IR. In this framework, the integration of a concept-based representation is viewed as a cross-lingual matching problem involving a word-based and concept-based representation language. This framework gives us the opportunity to adopt a large set of established crosslingual information retrieval methods and techniques for this domain. Experiments with basic term-to-term translation models demonstrate that this approach can significantly improve word-based retrieval. Directions for future work are using these concepts for communication between user and retrieval system, extending upon the translation models and extending CLIR-enhanced concept-based retrieval outside the biomedical domain. Available online from http://purl.utwente.nl/publications/72481.

Related Organizations
Keywords

IR-78542

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!