
Inductive Logic Programming (ILP) is a research area which investigates the construction of first-order definite clause theories from examples and background knowledge. ILP systems have been applied successfully in a number of real-world domains. These include the learning of structure-activity rules for drug design, finite-element mesh design rules, rules for primary-secondary prediction of protein structure and fault diagnosis rules for satellites. There is a well established tradition of learning-in-the-limit results in ILP. Recently some results within Valiant's PAC-learning framework have also been demonstrated for ILP systems. In this paper it is argued that algorithms can be directly derived from the formal specifications of ILP. This provides a common basis for Inverse Resolution, Explanation-Based Learning, Abduction and Relative Least General Generalisation. A new general-purpose, efficient approach to predicate invention is demonstrated. ILP is underconstrained by its logical specification. Therefore a brief overview of extra-logical constraints used in ILP systems is given. Some present limitations and research directions for the field are identified.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 56 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
