
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 11573/125313
Description logics (DLs) and rules are formalisms that emphasize different aspects of knowledge representation: whereas DLs are focused on specifying and reasoning about conceptual knowledge, rules are focused on nonmonotonic inference. Many applications, however, require features of both DLs and rules. Developing a formalism that integrates DLs and rules would be a natural outcome of a large body of research in knowledge representation and reasoning of the last two decades; however, achieving this goal is very challenging and the approaches proposed thus far have not fully reached it. In this paper, we present a hybrid formalism of MKNF + knowledge bases , which integrates DLs and rules in a coherent semantic framework. Achieving seamless integration is nontrivial, since DLs use an open-world assumption, while the rules are based on a closed-world assumption. We overcome this discrepancy by basing the semantics of our formalism on the logic of minimal knowledge and negation as failure (MKNF) by Lifschitz. We present several algorithms for reasoning with MKNF + knowledge bases, each suitable to different kinds of rules, and establish tight complexity bounds.
data complexity; description logics; combined complexity; theory; answer set programming
data complexity; description logics; combined complexity; theory; answer set programming
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 164 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
