
This paper presents an approach to automatically optimize the retrieval quality of ranking functions. Taking a Swarm Intelligence perspective, we present a novel method, Swarm-Rank, which is well-founded in a Particle Swarm Optimization framework. SwarmRank learns a ranking function by optimizing the combination of various types of evidences such content and hyperlink features, while directly maximizing Mean Average Precision, a widely used evaluation measure in Information Retrieval. Experimental results on well-established Learning To Rank benchmark datasets show that our approach significantly outperformed standard approaches (i.e., BM25) that only use basic statistical information derived from documents collections, and is found to be competitive with Ranking SVM and RankBoost in the task of ranking relevant documents at the very top positions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
