
This paper discusses three techniques useful in relaxing the constraints imposed by control flow on parallelism: control dependence analysis, executing multiple flows of control simultaneously, and speculative execution. We evaluate these techniques by using trace simulations to find the limits of parallelism for machines that employ different combinations of these techniques. We have three major results. First, local regions of code have limited parallelism, and control dependence analysis is useful in extracting global parallelism from different parts of a program. Second, a superscalar processor is fundamentally limited because it cannot execute independent regions of code concurrently. Higher performance can be obtained with machines, such as multiprocessors and dataflow machines, that can simultaneously follow multiple flows of control. Finally, without speculative execution to allow instructions to execute before their control dependences are resolved, only modest amounts of parallelism can be obtained for programs with complex control flow.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 187 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
