
Transactional data are ubiquitous. Several methods, including frequent itemsets mining and co-clustering, have been proposed to analyze transactional databases. In this work, we propose a new research problem to succinctly summarize transactional databases. Solving this problem requires linking the high level structure of the database to a potentially huge number of frequent itemsets. We formulate this problem as a set covering problem using overlapped hyperrectangles; we then prove that this problem and its several variations are NP-hard. We develop an approximation algorithm HYPER which can achieve a ln(k) + 1 approximation ratio in polynomial time. We propose a pruning strategy that can significantly speed up the processing of our algorithm. Additionally, we propose an efficient algorithm to further summarize the set of hyperrectangles by allowing false positive conditions. A detailed study using both real and synthetic datasets shows the effectiveness and efficiency of our approaches in summarizing transactional databases.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
