
In this paper we propose a method that combines the advanced data analysis of the automatic statistical methods and the flexibility and manual parameter tuning of interactive visual clustering. We present the Semi-Supervised Visual Clustering (SSVC) interface; its main contribution is the learning of the optimal projection distance metric for the star and spherical coordinate visualization systems. Beyond the conventional manual setting, it couples the visual clustering with the automatic setting where the projection distance metric is learned from the available set of user feedbacks in the form of either item similarities or direct item annotations. Moreover, SSVC interface allows for the hybrid setting where some parameters are manually set by the user while the remaining parameters are determined by the optimal distance algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
