
It is widely believed that some queries submitted to search engines are by nature ambiguous (e.g., java, apple). However, few studies have investigated the questions of "how many queries are ambiguous?" and "how can we automatically identify an ambiguous query?" This paper deals with these issues. First, we construct the taxonomy of query ambiguity, and ask human annotators to manually classify queries based upon it. From manually labeled results, we find that query ambiguity is to some extent predictable. We then use a supervised learning approach to automatically classify queries as being ambiguous or not. Experimental results show that we can correctly identify 87% of labeled queries. Finally, we estimate that about 16% of queries in a real search log are ambiguous.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 57 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
