
We investigate the number of plane geometric, i.e., straight-line, graphs, a set S of n points in the plane admits. We show that the number of plane graphs and connected plane graphs as well as the number of cycle-free plane graphs is minimized when S is in convex position. Moreover, these results hold for all these graphs with an arbitrary but fixed number of edges. Consequently, we provide simple proofs that the number of spanning trees, cycle-free graphs (forests), perfect matchings, and spanning paths is also minimized for point sets in convex position.In addition we construct a new extremal configuration, the so-called double zig-zag chain. Most noteworthy this example bears Θ*(√72n) = Θ*(8.4853n) triangulations and Θ*(41.1889n) plane graphs (omitting polynomial factors in both cases), improving the previously known best maximizing examples.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
