Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1144/iavcel...
Part of book or chapter of book . 2018 . Peer-reviewed
License: STM Policy #2
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An investigation of vulcanian eruption dynamics using laboratory analogue experiments and scaling analysis

Authors: Clarke, AB; Phillips, JC; Chojnicki, KN;

An investigation of vulcanian eruption dynamics using laboratory analogue experiments and scaling analysis

Abstract

Astract: Vulcanian eruptions are frequent, small-scale, short-lived explosive volcanic eruptions, which are thought to be produced by impulsive sources. The experiments presented here, produced byinjectionsofmixturesofwater,alcoholorsaltandsolidparticlesintofreshwater,createdawide variety of turbulent flows from steady and impulsive sources. We focus on the experimental flows analogous to Vulcanian events ‐ unsteady, finite-volume releases of buoyancy (thermals) and momentum (puffs), and short releases driven by both momentum and buoyancy. Dimensional analysis, based on two controlling source parameters, total injected momentum (M) and total injected buoyancy (B), identified a universal scaling relationship for the propagation of the flows; the non-dimensional, time-varying velocity term (ut 1/2 /B 1/4 ), where u is flow front vertical velocityandtistimefromflowonset,varieswiththetime-varying,non-dimensionalratioofsource parameters (M/Bt), such that ut 1/2 /B 1/4 ¼ k(M/Bt) 1/2 . The quantitative relationship successfully describes experiments and several Vulcanian eruptions for a wide range of initial conditions. The utility of the relationship is demonstrated by estimating total mass erupted and vent mass flux as a function of time, two parameters important to hazards assessment, for the well-documented )

Country
United Kingdom
Related Organizations
Keywords

550

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!