
Given a group G, we show how one can define a vague group structure on G via a chain of subgroups of G. We discuss how a group homomorphism f from a vague group X onto a group Y induces a vague group structure on Y with f satisfying the vague homomorphism property. The notion of Ω-vague groups is introduced, where Ω is a fuzzy subset. The direct product G1 × G2 of two vague groups and the internal vague direct product of subgroups of a vague group is introduced.
Vague group, fuzzy equality, vague binary operations, vague homomorphism
Vague group, fuzzy equality, vague binary operations, vague homomorphism
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
