<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Of those gauge theories of gravity known to be equivalent to general relativity, only the biconformal gauging introduces new structures — the quotient of the conformal group of any pseudo-Euclidean space by its Weyl subgroup always has natural symplectic and metric structures. Using this metric and symplectic form, we show that there exist canonically conjugate, orthogonal, metric submanifolds if and only if the original gauged space is Euclidean or signature 0. In the Euclidean cases, the resultant configuration space must be Lorentzian. Therefore, in this context, time may be viewed as a derived property of general relativity.
High Energy Physics - Theory, Physics, FOS: Physical sciences, biconformal, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, conformal, General relativity, gauge theory, High Energy Physics - Theory (hep-th), time, signature
High Energy Physics - Theory, Physics, FOS: Physical sciences, biconformal, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, conformal, General relativity, gauge theory, High Energy Physics - Theory (hep-th), time, signature
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |