
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 11581/221264
We study the performance of simple error correcting and error avoiding quantum codes together with their concatenation for correlated noise models. Specifically, we consider two error models: (i) a bit-flip (phase-flip) noisy Markovian memory channel (model I); (ii) a memory channel defined as a memory degree dependent linear combination of memoryless channels with Kraus decompositions expressed solely in terms of tensor products of X-Pauli (Z-Pauli) operators (model II). The performance of both the three-qubit bit flip (phase flip) and the error avoiding codes suitable for the considered error models is quantified in terms of the entanglement fidelity. We explicitly show that while none of the two codes is effective in the extreme limit when the other is, the three-qubit bit flip (phase flip) code still works for high enough correlations in the errors, whereas the error avoiding code does not work for small correlations. Finally, we consider the concatenation of such codes for both error models and show that it is particularly advantageous for model II in the regime of partial correlations.
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
