<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The problem of proving generalization bounds for the performance of learning algorithms can be formulated as a problem of bounding the bias and variance of estimators of the expected error. We show how various stability assumptions can be employed for this purpose. We provide a necessary and sufficient stability condition for bounding the bias and variance for the Empirical Risk Minimization algorithm, and various sufficient conditions for bounding bias and variance of estimators for general algorithms. We discuss settings in which it is possible to obtain exponential bounds, and we prove an extension of the bounded-difference inequality for "almost always" stable algorithms.
empirical risk minimization, Computational learning theory, stability, estimators, Rationality and learning in game theory, Noncompact Lie groups of transformations, Differential geometry of symmetric spaces, generalization
empirical risk minimization, Computational learning theory, stability, estimators, Rationality and learning in game theory, Noncompact Lie groups of transformations, Differential geometry of symmetric spaces, generalization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |