<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Herein we develop a dynamical foundation for fractional Brownian motion. A clear relation is established between the asymptotic behavior of the correlation function and diffusion in a dynamical system. Then, assuming that scaling is applicable, we establish a connection between diffusion (either standard or anomalous) and the dynamical indicator known as the Hurst coefficient. We argue on the basis of numerical simulations that although we have been able to prove scaling only for "Gaussian" processes, our conclusions may well apply to a wider class of systems. On the other hand, systems exist for which scaling might not hold, so we speculate on the possible consequences of the various relations derived in the paper on such systems.
FIS/03 - Fisica della materia, FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
FIS/03 - Fisica della materia, FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |