
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Gravitational waves propagate at the speed of light in general relativity, because of their special relativistic basis. However, light propagation is linked to the electromagnetic phenomena, with the permittivity and permeability constants as the determining factors. Is there a deeper reason why waves in a geometric theory of gravity propagate at a speed determined by electromagnetic constants? What is the relation between gravity’s own constants and the speed of gravitational waves? Our attempt to answer these fundamental questions takes us far and deep into the universe.
[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc], FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc], FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
