Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2011
Data sources: zbMATH Open
International Journal of Modern Physics D
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GRAVITATIONAL COLLAPSE WITH TANGENTIAL PRESSURE

Gravitational collapse with tangential pressure
Authors: Malafarina, Daniele; Joshi, Pankaj S.;

GRAVITATIONAL COLLAPSE WITH TANGENTIAL PRESSURE

Abstract

Using the general formalism for spherical gravitational collapse developed in [P. S. Joshi and I. H. Dwivedi, Class. Quant. Grav.16 (1999) 41; P. S. Joshi and R. Goswami, Phys. Rev. D76 (2007) 084026], we investigate here the final fate of a spherical distribution of a matter cloud, where radial pressures vanish but tangential pressures are nonzero. Within this framework, firstly we examine the effect of introducing a generic small pressure in a well-known black hole formation process, which is that of an otherwise pressure-free dust cloud. The intriguing result we find is that a dust collapse that was going to a black hole final state could now go to a naked singularity final configuration, when arbitrarily small tangential pressures are introduced. The implications of such a scenario are discussed in some detail. Secondly, the approach here allows us to generalize the earlier results obtained on gravitational collapse with nonzero tangential pressure, in the presence of a nonzero cosmological constant. Finally, we discuss the genericity of black hole and naked singularity formation in collapse with nonzero tangential pressure. The treatment here gives a unified and complete picture on collapse final states, in terms of black hole and naked singularity formation, generalizing the earlier results obtained for this class of collapse models. Thus the role of tangential stresses towards determining collapse end-states emerges in a straightforward and transparent manner in our treatment.

Keywords

Black holes, Exact solutions to problems in general relativity and gravitational theory, Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.), gravitational collapse, Space-time singularities, cosmic censorship, etc., black holes, naked singularity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Average
bronze