
We present an algorithm for determining the shortest path between any two points along the surface of a polyhedron which need not be convex. This algorithm also computes for any source point on the surface of a polyhedron the inward layout and the subdivision of the polyhedron which can be used for processing queries of shortest paths between the source point and any destination point. Our algorithm uses a new approach which deviates from the conventional “continuous Dijkstra” technique. Our algorithm has time complexity O(n2) and space complexity Θ(n).
shortest path, Computer graphics; computational geometry (digital and algorithmic aspects), Parallel algorithms in computer science, computational robotics
shortest path, Computer graphics; computational geometry (digital and algorithmic aspects), Parallel algorithms in computer science, computational robotics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 79 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
