
The fold-flip bifurcation occurs if a map has a fixed point with multipliers +1 and -1 simultaneously. In this paper the normal form of this singularity is calculated explicitly. Both local and global bifurcations of the unfolding are analyzed by exploring a close relationship between the derived normal form and the truncated amplitude system for the fold-Hopf bifurcation of ODEs. Two examples are presented, the generalized Hénon map and an extension of the Lorenz-84 model. In the latter example the first-, second- and third-order derivatives of the Poincaré map are computed using variational equations to find the normal form coefficients.
Normal forms for dynamical systems, bifurcations of fixed-points, Dynamical aspects of symmetries, equivariant bifurcation theory, Hénon map, normal forms, Lorenz-84 model, center manifold
Normal forms for dynamical systems, bifurcations of fixed-points, Dynamical aspects of symmetries, equivariant bifurcation theory, Hénon map, normal forms, Lorenz-84 model, center manifold
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
