
Holonomic Quantum Computation (HQC) is an all-geometrical approach to quantum information processing. In the HQC strategy information is encoded in degenerate eigen-spaces of a parametric family of Hamiltonians. The computational network of unitary quantum gates is realized by driving adiabatically the Hamiltonian parameters along loops in a control manifold. By properly designing such loops the nontrivial curvature of the underlying bundle geometry gives rise to unitary transformations i.e., holonomies that implement the desired unitary transformations. Conditions necessary for universal QC are stated in terms of the curvature associated to the non-abelian gauge potential (connection) over the control manifold. In view of their geometrical nature the holonomic gates are robust against several kind of perturbations and imperfections. This fact along with the adiabatic fashion in which gates are performed makes in principle HQC an appealing way towards universal fault-tolerant QC.
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Quantum Physics (quant-ph)
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 101 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
