
The exactly solvable eigenproblems in Schrödinger quantum mechanics typically involve the differential "shift operators". In the standard supersymmetric (SUSY) case, the shift operator turns out to be of first order. In this work, I discuss a technique to generate exactly solvable eigenproblems by using second order shift operators. The links between this method and SUSY are analysed. As an example, we show the existence of a two-parametric family of exactly solvable Hamiltonians, which contains the Abraham–Moses potentials as a particular case.
High Energy Physics - Theory, Quantum Physics, Supersymmetry and quantum mechanics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Quantum Physics (quant-ph)
High Energy Physics - Theory, Quantum Physics, Supersymmetry and quantum mechanics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 67 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
