
QCD is the accepted (that is, the effective) theory of the strong interaction; studies at colliders are no longer designed to establish this. Such studies can now be divided into two categories. The first involves the identification of observables which can be both measured and predicted at the level of a few percent. Such studies parallel those of the electroweak sector over the past fifteen years, and deviations from expectations would be a sign of new physics. These observables provide a firm "place to stand" from which to extend our understanding. This links to the second category of study, where one deliberately moves to regions in which the usual theoretical tools fail; here new approximations in QCD are developed to increase our portfolio of understood processes, and hence our sensitivity to new physics. Recent progress in both these aspects of QCD at colliders is discussed.
High Energy Physics - Experiment (hep-ex), FOS: Physical sciences, High Energy Physics - Experiment
High Energy Physics - Experiment (hep-ex), FOS: Physical sciences, High Energy Physics - Experiment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
