
We revisit the problem of the development of singularities in the gravitational collapse of an inhomogeneous dust sphere. As shown by Yodzis et al1, naked singularities may occur at finite radius where shells of dust cross one another. These singularities are gravitationally weak 2, and it has been claimed that at these singularities, the metric may be written in continuous form 2, with locally L∞ connection coefficients 3. We correct these claims, and show how the field equations may be reformulated as a first order, quasi-linear, non-conservative, non-strictly hyperbolic system. We discuss existence and uniqueness of generalized solutions of this system using bounded functions of bounded variation (BV) 4, where the product of a BV function and the derivative of another BV function may be interpreted as a locally finite measure. The solutions obtained provide a dynamical extension to the future of the singularity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
