
We show that a quantum deformation of quantum mechanics given in a previous work is equivalent to quantum mechanics on a nonlinear lattice with step size ∆x=(1−q)x. Then, based on this, we develop the basic formalism of quantum group Schrödinger field theory in one spatial quantum dimension, and explicitly exhibit the SU q(2) covariant algebras satisfied by the q-bosonic and q-fermionic Schrödinger fields. We generalize this result to an arbitrary number of fields.
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Quantum field theory; related classical field theories, FOS: Physical sciences, Quantum groups and related algebraic methods applied to problems in quantum theory
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Quantum field theory; related classical field theories, FOS: Physical sciences, Quantum groups and related algebraic methods applied to problems in quantum theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
