<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reinforcement learning (RL) is a state or action value based machine learning method which solves large-scale multi-stage decision problems such as Markov Decision Process (MDP) and Semi-Markov Decision Process (SMDP) problems. We minimize the makespan of flow shop scheduling problems with an RL algorithm. We convert flow shop scheduling problems into SMDPs by constructing elaborate state features, actions and the reward function. Minimizing the accumulated reward is equivalent to minimizing the schedule objective function. We apply on-line TD(λ) algorithm with linear gradient-descent function approximation to solve the SMDPs. To examine the performance of the proposed RL algorithm, computational experiments are conducted on benchmarking problems in comparison with other scheduling methods. The experimental results support the efficiency of the proposed algorithm and illustrate that the RL approach is a promising computational approach for flow shop scheduling problems worthy of further investigation.
Scheduling, reinforcement learning, flow shop, TD(λ)
Scheduling, reinforcement learning, flow shop, TD(λ)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |