
pmid: 10529082
This paper is concerned with the asymptotic hyperstability of recurrent neural networks. We derive based on the stability results necessary and sufficient conditions for the network parameters. The results we achieve are more general than those based on Lyapunov methods, since they provide milder constraints on the connection weights than the conventional results and do not suppose symmetry of the weights.
Periodicity, Nonlinear Dynamics, Neural Networks, Computer
Periodicity, Nonlinear Dynamics, Neural Networks, Computer
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
