Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://psb.stanford....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1142/978981...
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

INTRINSIC PROTEIN DISORDER AND PROTEIN-PROTEIN INTERACTIONS

Authors: Bin Xue; A. Keith Dunker; Jingwei Meng; Vladimir N. Uversky; Fei Huang; Christopher J. Oldfield; Pedro Romero; +1 Authors

INTRINSIC PROTEIN DISORDER AND PROTEIN-PROTEIN INTERACTIONS

Abstract

Intrinsically disordered proteins often bind to more than one partner. In this study, we focused on 11 sets of complexes in which the same disordered segment becomes bound to two or more distinct partners. For this collection of protein complexes, two or more partners of each disordered segment were selected to have less than 25% amino acid identity at structurally aligned positions. As it turned out that most of the examples so selected had similar 3D structure, the studied set was reduced to just these similar-fold cases. Based on the analyses of the interacting partners, the average sequence identity of the partners' binding regions showed substantially higher conservation as compared to the nonbinding regions: The residue identities, averaged over the 11 sets of partner proteins, were as follows: binding residues, 42 ± 6%; nonbinding residues 20 ± 3%; nonbinding buried residues 26 ± 5%; and nonbinding surface residues 16 ± 3%. The higher sequence identity of the binding residues compared to the other sets of residues provides evidence that these observed interactions are likely to be meaningful biological interactions, not artifacts. Since many of the features of the various interactions indicate that the disordered binding segments were likely to have been disordered before binding, these results also add further weight to the existence and function of intrinsically disordered regions inside cells.

Keywords

Models, Molecular, Binding Sites, Protein Conformation, Structural Homology, Protein, Computational Biology, Humans, Proteins, Protein Interaction Domains and Motifs, Databases, Protein, Conserved Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%